人工智能,如何妙笔“生”画******
核心阅读
输入一段话,“绘”出一幅画——人工智能的绘画本领,吸引众多职业画师和零基础用户尝鲜。人工智能绘画的本质是计算,接受“语言描述”指令后根据自身的理解还原出图像。未来,人工智能技术应用于艺术创作等领域,还要注意防范潜在风险,让技术进步更好地造福社会。
不用画笔、颜料,输入一段描述性文字,计算机就能自动解析,生成相应的画作。2022世界人工智能大会上,人工智能绘画的展示令观众惊叹。
一些过去专属于人类创作的领域,比如绘画、书法、写作、作曲,如今人工智能也已开始涉足。人工智能是如何绘画的?当前沿技术与艺术相遇,将碰撞出怎样的火花?在内容、版权等方面又是否存在问题?
从文本到图像,人工智能绘画本质是计算
人工智能绘画是一个从文本到图像的生成过程,输入一段话,生成一幅画,本质是计算。简要地说,计算机通过大量学习,能识别特定图片元素和文本之间的关联。同理,人工智能程序在收到“语言描述”指令后,可以根据自身的算法还原出图像。
设定计算机程序作画的想法由来已久。早在20世纪70年代,就有艺术家开发了操作机械臂的电脑程序,让机械臂按照指令在画纸上作画。近些年,人工智能技术日新月异,科研人员尝试设计自动作图的计算机程序。但过去很长一段时间,人工智能“画”出的作品普遍不够好,往往只是一些模糊的图像元素的组合,还称不上是完整的画。
今年以来,人工智能画技迅速“进化”。谈及技术突破原因,百度文心一格总架构师肖欣延认为,这是预训练大模型的兴起、大数据的训练和扩散模型的出现3方面共同作用的结果。
具体来说,预训练大模型增强了人工智能的通用性,成为人工智能技术及应用的新基座;大数据的训练中,通过在众多高性能GPU(图形处理器)算力资源中进行并行学习,计算机能够在短时间内完成大量的数据学习。近年来,几乎所有人工智能的技术发展都受益于这两方面的进展。而对人工智能绘画来说,扩散模型的出现至关重要。
扩散模型的原理是,通过人为逐步添加噪声,让图像逐渐变“模糊”,再不断学习去噪过程,如此人工智能就能从完全是噪声的图片中逐渐还原出清晰的图片,即“画”出图像。
“这一过程与人类学习相似。通常,人们学画从临摹开始,机器也是如此。它最初生成的图像可能很模糊,但计算机会不断修正,从而输出越来越清楚、层次越来越丰富的图像。”肖欣延说。
扩散模型让人工智能绘画技术实现跨越,不仅作画质量快速提升,生成时间也缩短到几秒钟。
众多用户尝鲜,大量应用加速“画技”进化
汤林杰是某互联网公司的运营人员。工作中,他需要借助一些图片来丰富文案,而网络上找到合适的配图并不容易。今年10月,了解人工智能绘画程序后,他尝试自己“画”图。现在,人工智能绘画工具已经是他工作的重要辅助。
随着算法模型对公众开放以及训练数据成本的下降,人工智能绘画门槛越来越低,一些简易化操作平台在国内外兴起。如今,不仅一些职业插画师尝试用人工智能绘画程序辅助作画、激发灵感,许多没有绘画基础的用户也开始尝鲜,并“晒”在社交平台上。
大量需求的涌现也加速了技术的更新迭代。“用人工智能绘画的人越多,算法就越能理解输入的描述文本,画作质量就越高。”肖欣延表示,当前人工智能绘画水平与今年初相比,已经有很大进步。
不过,目前的人工智能绘画技术并不完美。首先,可控性仍然不高,即计算机不能很好理解人类指令的含义,即便是输入“画两个苹果,左边红色,右边绿色”这样的简单描述,生成的图像也可能有很大偏差;其次,细节呈现能力还不够。比如,对空间、透视和光影的刻画就很不如意。不少人工智能渲染出的画作,初看上去惊艳,认真观察问题却不少。
但肖欣延认为,人工智能绘画在技法上的缺陷未来有望得到弥补。比如,基于跨模态大模型和强大的深度学习框架,百度开发的技术一定程度上已经缓解这些问题。此外,未来人工智能不仅能作画,还能根据文本描述生成视频,并直接配上解说文字,“可以把视频生成看作是维度更高的绘画,从技术层面看,这是可以实现的。”
防范潜在风险,守住法律和伦理底线
人工智能进入绘画领域,计算机会取代人类画师吗?
在肖欣延看来,好的绘画与构图、设计语言、视觉情绪息息相关,即使人人都可以用人工智能技术作画,但通常只有高水平的画师才能制作出优秀的人工智能绘画作品,“人工智能只是作画的辅助工具”。此外,虽然有的人工智能绘画语言娴熟,也包含细腻的情感,但并不意味着机器有意识、情感,它不过是学过类似的作品,又恰好呈现出来了。“优秀的艺术作品往往是人的思想的投射,目前机器并没有真正具备思考能力。”肖欣延说。
不少业内人士认为,不妨以开放的心态拥抱人工智能绘画,接受新事物。可以预想,将来绘画中一些繁琐、重复性的工作可能由计算机完成,创作者能腾出更多时间去构思想法与创意,调整构图、色彩、光影氛围等。
“人工智能可能会激发绘画创造的活力。”肖欣延表示,20世纪前后,照相技术让传统肖像画失去市场,促使一些画家向非写实方向创新。与人工智能技术融合,或许能激发画家创作出别开生面的作品。
不过,由于人工智能绘画发展刚刚起步,技术发展也引发关于版权、内容把控等问题的争议。比如,有人认为,未经授权人工智能画作模仿原画的内容、构图和风格等,侵犯了原作者的版权,有违法嫌疑。也有人认为,“机器学习”过程是一种类人化的创作行为,同样体现了创造者的思想和劳动,应当获得版权保护。此外,还有人担忧,人工智能绘画技术若被滥用,可能滋生暴力等令人不适的图像。面对新技术发展,有必要前瞻潜在的风险,只有守住法律和伦理底线,技术进步才能更好地造福社会。
不只是绘画,写作、作曲、生成短片,人工智能日益强大的深度学习能力,让它与不同艺术门类发生着奇妙的碰撞。展望未来,业界专家认为,人工智能与艺术融合,一方面会降低一些艺术门类的创造门槛,让更多人参与到当代的审美创造中来;另一方面新技术会带来新的审美风格,人们或许能从中扩展对自身和世界的认识。
记者 喻思南
2022中国农业科学十大进展发布 “基因”成高频词******
光明网讯(记者宋雅娟)12月16日,2022中国农业农村科技发展高峰论坛暨中国现代农业发展论坛在北京召开。论坛上发布了《2022中国农业科学重大进展》报告,该报告由中国农业科学院科技管理局和农业信息研究所科技情报分析与评估创新团队研制,遴选了10项能够充分代表2021年我国农业科技前沿研究水平、取得重大突破性进展的基础科学研究成果。
10项重大进展具体如下:
1.首次实现异源四倍体野生稻的从头驯化。提出异源四倍体野生稻快速从头驯化的新策略,突破了多倍体野生稻参考基因组绘制、遗传转化以及基因组编辑等技术瓶颈,建立了从头驯化技术体系;证明了异源四倍体野生稻快速从头驯化策略切实可行,对创制高产抗逆新型作物和保障粮食安全具有重要意义。
2.解析水稻品种适应土壤肥力的遗传基础。该研究鉴定到一个水稻氮高效关键基因(OsTCP19),阐明了土壤氮素水平调控水稻分蘖发育过程的分子机理,揭示了水稻对贫瘠土壤适应的遗传基础;为水稻氮高效育种提供了重大关键基因,对保障农业绿色发展具有重要意义。
3.首次绘制黑麦高精细物理图谱。该研究解决了黑麦基因组组装难题,绘制了黑麦高精细物理图谱,解析了黑麦染色体演化机制,鉴定了黑麦籽粒淀粉合成、抽穗期等关键基因;为麦类作物育种源头创新提供了独特基因资源。
4.实现杂交马铃薯基因组设计育种。该研究利用基因组大数据进行育种决策,建立杂交马铃薯基因组设计育种体系,培育了第一代高纯合度自交系和概念性杂交种“优薯1号”;证明了马铃薯杂交种子种植的可行性,推动了马铃薯育种和繁殖方式变革。
5.构建规模最大的猪肠道微生物基因组集。该研究通过对猪500个肠道样本开展深度宏基因组测序,并整合了已有的猪肠道菌群基因组,构建了规模最为宏大的猪肠道微生物基因组集;为猪强抗逆性、高生长速度、高饲料转化相关菌种挖掘和利用提供了重要资源。
6、揭示抗病小体激活植物免疫机制。该研究发现ZAR1抗病小体的钙离子通道功能,建立了钙信号与植物细胞死亡的联系,揭示了一种全新的植物免疫受体作用机制;为人工设计广谱、持久的新型抗病蛋白进而发展绿色农业带来了新启示。
7.揭示超级害虫烟粉虱多食性奥秘。该研究首次发现植物和动物之间存在功能性水平基因转移现象,揭示了烟粉虱“偷盗”寄主植物解毒基因,解析了广泛寄主适应性的分子机制;发现了昆虫多食性的奥秘,为害虫绿色防控提供了全新思路。
8.揭示光信号调控大豆共生结瘤机制。该研究解析了地上光信号与地下共生信号互作调控大豆根瘤发育的机制,证实了光信号对大豆根瘤形成及共生固氮的关键作用;揭示了豆科植物地上地下协同的新机制,为优化农业系统碳-氮平衡提供新策略。
9.首次实现二氧化碳到淀粉的人工合成。该研究设计了化学和酶耦合催化的人工淀粉合成途径,实现了不依赖植物光合作用的二氧化碳到淀粉的人工全合成;使工业化车间制造淀粉成为可能,为实现“双碳”和粮食安全战略提供全新解决思路。
10.揭示脊椎动物水生到陆生的演化遗传机制。该研究鉴定到脊椎动物肺、心脏及四肢等器官的遗传变异与陆生适应有关,系统解析了脊椎动物在早期登陆过程中的遗传演化机制;揭示了脊椎动物从水生到陆生演化的遗传奥秘,为理解脊椎动物水生到陆生的演化提供了关键认知。
(文图:赵筱尘 巫邓炎)